
Journal of Sound and <ibration (2001) 239(5), 931}948
doi:10.1006/jsvi.2000.3193, available online at http://www.idealibrary.com on
ESTIMATION OF SEA COUPLING LOSS FACTORS USING
A DUAL FORMULATION AND FEM MODAL

INFORMATION, PART II:
NUMERICAL APPLICATIONS

L. MAXIT AND J.-L. GUYADER

INSA de ¸yon (National Institute of Applied Sciences), ¸.<.A. (<ibrations-Acoustic ¸aboratory),
Bat. 303, 20, avenue Albert Einstein, 69621 <illeurbanne Cedex, France

E-mail: maxit@lva.insa-lyon.fr, guyader@lva.insa-lyon.fr

(Received 28 June 1999, and in ,nal form 25 January 2000)

Numerical applications of the approach presented in a companion paper is proposed for
the cases of coupled beams and coupled plates. Results are compared with other
calculations. CLF calculations for coupled beams are achieved with an analytical modal
description. The in#uences of thickness ratio and damping on the quality of the prediction
are presented and discussed. CLF determination with an FEM modal description are then
applied to the case of two thin plates coupled in an L shape. This case allows comparison
with other calculations and will be a representative of the applicability of the method to
more complex structures such as industrial ones. The good agreement with other methods
validates the calculation of CLF with the present method.
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1. INTRODUCTION

In an earlier companion paper [1], a theoretical method was presented to calculate the
coupling loss factor from modal information of subsystem. By using dual modal
formulation and an appropriate subsystem mode de"nition, the expression which has to be
obtained (see (68) of reference [1]) allows CLF to be determined only from a knowledge of
the modes of the uncoupled-subsystems and damping information. In the case of complex
subsystems, the modal information can be calculated by "nite element method. The mode
shapes are then described by nodal variables (displacements or forces) and the interaction
modal work between a couple of modes can be evaluated by considering the discretized
mode (see [1], section 4).

In this paper, numerical applications of the approach are proposed to illustrate the
method and to validate it against other methods. Before going on to perform CLF
calculations with FEM, an example of coupled beams is used to determine CLF from the
dual modal formulation. In this section, modes are calculated analytically and results are
compared with `exacta calculations for di!erent thickness ratios and di!erent damping loss
factors of the beams.

Validation of the CLF calculation with FEM data are then presented. An example of
L-shaped plates is considered, which is representative of the applicability of the method to
more complex structures and allows the method to be compared with the results given by
the SEA inverse matrix technique with numerical experiments.
0022-460X/01/050931#18 $35.00/0 ( 2001 Academic Press
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2. A FIRST EXAMPLE

2.1. PRESENTATION

This example is based on two Euler}Bernoulli beams coupled rigidly at one end as shown
in Figure 1. The beams of rectangular section are simply supported at their ends, and the
coupling is expressed by continuity conditions on the #exural moments and the angular
rotations.

¸a , ba , ha , Ea , oa , la are, respectively, length, width, thickness, Young's modulus, mass
density, and Poisson's coe$cient of beam a. Then the cross-sectional area is Sa"baha and
the surface inertia of beam a is Ia"12~1ba(ha)3. In co-ordinate x

i
(i"1, 2, 3), the variables

=1
i

and =2
i

(i"1, 2, 3) represent the displacements and p1
ij

and p2
ij

are the stress tensors
associated to beams 1 and 2 respectively. A local co-ordinate system (x, y, z) is represented
in Figure 1. (A list of nomenclature is given in B.)

The Euler}Bernoulli assumptions on displacements and stresses for beam a are

=a
1
(x, y, z, t)"!y

L=a
y

Lx
(x, t), =a

2
(x, y, z, t)"=a

y
(x, t), =a

3
(x, y, z, t)"0, a"1, 2 (1)

where=a
y
(x, t) is the generalized transversal displacement of beam a. Also

pa
11

(x, y, z, t)"ypa
x
(x, t), pa

ij
(x, y, z, t)"0, a"1, 2 (2)

where pa
x
(x, t) is the generalized normal stress of beam a.

2.2. ANALYTICAL DESCRIPTION

The beams are supposed to be made of the same material (aluminium) but it makes the
hypothesis that beam 1 is thinner than beam 2. The consequence is that beam 1 will vibrate
as if it is clamped at its coupling end and beam 2 will vibrate as if it is simply supported at its
coupling end. The subsystem de"nitions are then deduced naturally to be the
uncoupled-blocked subsystem for beam 1 and the uncoupled-free subsystem for beam 2.
The boundary conditions for the extraction of subsystem modes are simply
supported-clamped for beam 1, and simply supported}simply supported for beam 2 (see
Figure 2).
Figure 2. Uncoupled beams: (a) uncoupled-blocked subsystem, beam 1; (b) uncoupled-free subsystem, beam 2.

Figure 1. Two pinned}pinned beams coupled rigidly at one end.



ESTIMATION OF SEA COUPLING LOSS FACTORS 933
Then subsystem 1 could have a stress description, and subsystem 2 could have
a displacement description. It is not necessary to re-develop the dual modal formulation,
because it is very simple to use the results of section 3 directly and the physical
interpretation of the interaction modal work to determinate the modal coupling
coe$cients, c12

pq
. In this example, the dual variables are the #exural moment and the angular

rotation. The #exural moment, M1
p
, is associated with beam 1 (stress description) and the

angular rotation, h2
z
, is associated with beam 2 (displacement description). The interaction

modal work exchanged by the pth mode of beam 1 and the qth mode of beam 2, W12
pq

, is
expressed by the product of the #exural moment of the pth mode and the angular rotation of
the qth mode at the coupling end,

W12
pq
"M3 1p

f
(¸

1
)hI 2q

z
(¸

1
), (3)

where M3 1p
f

(¸
1
) is the #exural moment of mode p of beam 1 at the coupling end, and hI 2q

z
(¸

1
)

is the angular rotation of mode q of beam 2 at the coupling end.
Euler}Bernouilli theory gives

M3 1p
f

(x)"I
1
pJ 1p
x

(x), where pJ 1p
x

(x) is the stress shape of mode p of beam 1, (4)

hI 2q
z

(x)"
L=I 2q

y
Lx

(x), where=I 2q
y

(x) is the displacement shape of mode q of beam 2. (5)

To evaluate CLF from equation (68) of Part 1, modes for each beam must be calculated.
The information necessary for beam 1 includes natural frequencies, generalized mass and
stress mode shapes at the coupling end, and for beam 2, includes frequencies, generalized
mass and displacement mode shapes at the coupling end.

For beam 1, modal analysis is developed in Appendix A where two methods are
presented to evaluate the stress mode shapes. Finally, the modal information can be
expressed by (for u1

p
O0)

u1
p
"S

E
1
I
1

o
1
S
1

(k1
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p
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1
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!x)))D, (8)

where u1
p

is the natural angular frequency and M1
p

the generalized mass of mode p.
For beam 2, the subsystem modal information is classical:

u2
q
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2
I
2

o
2
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2

(k2
q
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"

qn
¸
2

, (9)
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q
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o
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S
2
¸

2
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q
(x!¸

2
)), (11)

where u2
q

is the natural angular frequency and M2
q

the generalized mass of mode q.
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From equations (4,5,8,11), the expression for the interaction modal work (3) is

W12
pq
"2(k1

p
)2E

1
I
1
k2
q
. (12)

Note that the modal information necessary to evaluate the interaction modal work is
only the mode shape at the coupling end.

The CLF must be evaluated by taking into account only the coupling between the
resonant modes in the frequency bandwidth Du considered, these resonant modes being
chosen to represent to physical modes of the global structure, it justi"es that they describe
the global behaviour of the structure in the frequency bandwidth. One note N1

1
and N1

2
(resp. N2

1
and N2

2
), the modal orders of resonant modes with the lowest and highest natural

frequencies in Du for beam 1 (and beam 2). The number of resonant modes is
N

1
"N1

2
!N1

1
#1 for beam 1 and N

2
"N2

2
!N2

1
#1 for beam 2.

Then, with equation (68) of part 1, equations (6, 7), (10}12), the CLF is expressed by
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(13)

where D1
p
, D2

q
are the modal damping bandwidths.

It can be noticed that the damping loss factor can be attributed independently to each
mode of each subsystem. However, in classical SEA, one global damping loss factor a!ects
each subsystem for all the modes of the frequency bandwidth. It is assumed that
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where g
1

and g
2

are the DLFs of beam 1 (and beam 2), respectively.
With this assumption, (13) becomes
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2.3. NUMERICAL RESULTS

The present approach is compared to the results yielded by the SEA matrix-inversion
technique with numerical experiment (see reference [2]). Euler}Bernoulli theory and wave
decomposition is used to simulate the numerical experiment. The &&rain on the roof ''
excitation on beam 1 is approximated by averaging beam energy over 20 randomly
distributed points of excitation. The potential and kinetic energy obtained by the wave
decomposition for a given angular frequency are spatial and frequency averaged. The
coupling loss factor, gne

12
, is "nally evaluated by introducing beam energies into the SEA

relation when subsystem 2 is not excited,

gne
12

"

g
2
SE2

t
T

SE1
t
T!(n

1
/n

2
)SE2

t
T
, (16)
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where SEa
t
T is the total energy of beam a obtained from numerical experiment, and na is the

asymptotic modal density of beam a given by the analytical expression

na"¸au1@2
c A

oaSa
EaIa B

1@4
, (17)

in which u
c

is the central angular radian frequency of the frequency bandwidth.
The results given by equation (15) are called the &&CLF dual modal formulation'' or, in

short, CLF DMF, and the results given by the numerical experiment and equation (16) is
called &&SEA matrix-inversion''.

In the following, the values Ea"7]10`10 N/m2, la"0.3, oa"2700 kg/m3, a"1, 2 are
always used.

2.3.1. Intermodal coupling factors

The intermodal coupling factors, b12
pq

are shown in Figure 3 as a function of couples of
resonant modes of the two beams. (Note that the CLF are obtained by summing up all these
factors (see equation (15)):
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Generally speaking, the intermodal coupling factors vary considerably with the mode
couple. This is due to two phenomena: the spatial coincidence of mode shapes at the
connections; the frequency coincidence (second bracket in equation (18)).

In case of point connection, the frequency coincidence e!ect dominates and the
intermodal coupling factor is strong when u1

p
+u2

q
(see Figure 3).

2.3.2. Results for di+erent thickness ratio of the two beams

Figure 4 shows the CLF versus third-octave band for four di!erent beam thickness ratios.
There is a good agreement between the results from the approach developed in this paper
Figure 3. Intermodal coupling factors versus couples of resonant modes of the two beams, third-octave band
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Figure 4. Coupling loss factor versus frequency; one-third-octave band results; (a) h
2
/h

1
"1)5, (b) h

2
/h

1
"2,

(c) h
2
/h

1
"3, (d) h

2
/h

1
"4; ¸

1
"2)5 m, ¸

2
"3)5 m, b

1
"b

2
"0)01 m, h

1
"0)001 m, g

1
"g

2
"0)01. Two

calculations:**, present approach; ], SEA matrix-inversion.

936 L. MAXIT AND J.-L. GUYADER
and the results from numerical experiment. This is true even when the thickness ratio is near
unity but a small di!erence (see Figure 4(a)) is observed due to an increase of coupling
strength. In this case, the di!erence in impedance between the two subsystems is not
su$cient to ensure that the resonant modes in the frequency band are able to represent
completely the vibratory behaviour of the coupled subsystems.

An extreme case is shown in Figure 5 where the coupling of two identical beams is
considered. In this situation, the choice of subsystem modes is arbitrary but in accordance



Figure 5. Coupling loss factor versus frequency; one third-octave-band results; ¸
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with the dual modal formulation, one subsystem should be blocked and the other should be
free. The results given by the traditional wave approach (see expression (96) in reference [3])
are also plotted. As was foreseeable, some di!erences are noted between the results given by
the two approaches and the &&exact'' results. These di!erences are not so important (less than
5 dB), and show that even in a severe coupling case, the results given by the present
approach are not unsatisfactory. The improved wave theory given in reference [3], which
does not require the many assumptions necessary for SEA, can be more suitable for this
system of beams of equal thickness.

2.3.3. Comparison results given by two opposite choices of modes

Figure 6 shows the coupling loss factor versus the thickness ratio h
1
/h

2
. Two calculations

by the present approach have been made: the "rst, which is plotted as a solid line, considers
blocked modes for beam 1 and free modes for beam 2, whereas, the second, which is plotted
as a dashed line, considers free modes for beam 1 and blocked modes for beam 2. The modes
are then reversed between the two calculations.

When the thickness ratio is less than one, the subsystem modes used by the "rst
calculation suited well, whereas the second calculation gives poor results. Inversely, when
the thickness ratio is greater than one, the subsystem modes used by the second calculation
are the most appropriate.

It must be emphasized that the choice of subsystem modes used to calculate the CLF by
the present approach is not arbitrary. It should be chosen so that the subsystem modes are
closest to the physical modes of the global structure. For example, when h

1
/h

2
(l, beam 1

is thinner than beam 2 and will it vibrate rather as if it is clamped at its coupling end
whereas beam 2 will vibrate rather like a beam simply supported at its coupling end. In
this case, it can be deduced that beam 1 should be represented by the modes of the



Figure 6. Coupling loss factor versus thickness ratio h
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uncoupled-blocked subsystem, whereas beam 2 should be represented by the modes of the
uncoupled-free subsystem.

As in the previous section, some slight errors are noted for beams of equal thickness
whatever the choice of modes (which become arbitrary in this case).

2.3.4. Results for di+erent damping

Figure 7 shows the coupling loss factor versus third-octave band when the damping loss
factor of the beam is modi"ed. In Figure 7(a}c) the DLF are the same for the two beams.
Good agreement can be seen between both methods of calculation. In the case of low
damping, the di!erence is larger (see Figure 7(c)). In such a situation, a more detailed
approach (SmEdA) presented in references [4, 5] can be used which allows better results to
be obtained. This method allows modal energy distribution to be taken into account and
the calculations from the intermodal coupling factors accurate energy results when modal
overlap is low.

In Figure 7(d), the case of di!erent damping loss factors for the two beams is investigated.
As previously, the presented method agrees well with the classical calculation in equation
(16).

It can be noticed from the results given here that the CLF values depend slightly on
damping which justi"es the classical travelling wave approach which gives results that are
independent of damping. However, for very low damping, the damping dependence of CLF
is more important (see references [3, 6]) and in this case, SmEdA approach can be necessary
(see references [4, 5]).

The present approach agrees with the numerical experiment method but has major
advantages of giving CLF without solving equations, but only by making an analogy with
basic SEA modelization. The computation time is thus very short.
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3. APPLICATION OF CLF DETERMINATION WITH FEM DATA

To demonstrate the validity of the approach, the simple case of two-coupled
homogeneous plates in an L shape, shown in Figure 8, is considered.

From the "nite element point of view, the matrix form of the equation of motion is the
same for both complicated and simple structures. So, in principle, the problem treated will
be representative of the applicability of the method to more complicated cases. In addition,
this case allows a comparison with another calculation to be made.



Figure 8. Illustration of an L-shaped plate.

TABLE 1

De,nition and values of parameters

Plate 1 Plate 2

Length of the common edge A
1
"1 m A

2
"1 m

Other length B
1
"1 m B

2
"2)5 m

Thickness H
1
"3 mm H

2
"12 mm

Modulus of elasticity E
1
"2]10`11 Pa E

2
"2]10`11Pa

Density o
1
"7800 kg/M3 o

2
"7800 kg/M3

Poisson's ratio l
1
"0)3 l

2
"0)3

Damping loss factor g
1
"0)02 g

2
"0)02
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Thin plate theory is assumed and only bending motion is considered. All the non-coupled
edges of each plate are supposed to be simply supported. The parameter de"nitions and
their values are presented in Table 1.

Plate 1 is thinner than plate 2, so that it must be described by modes of the
uncoupled-blocked subsystem, and plate 2 must be described by modes of the
uncoupled-free subsystem. Thus, for subsystem de"nitions, plate 1 is clamped on the
coupling edge and simply supported on the others edges. Plate 2 is simply supported along
all the edges.

3.1. FINITE ELEMENT MODEL

The "nite element model of each subsystem is generated and analysed by
UAI/NASTRAN v11.8 package and by using the QUAD4 Element. The numbers of nodes
of the regular meshes are chosen in order to have a minimum of 10 elements at natural
wavelength at 3000 Hz. Then, for plate 1 there are 100 nodes along each edges, and for



TABLE 2

De,nition of the extracted FEM output data for each plate. i: node on the common edge
(coupling node set); generalized masses normalized to one

Mode Mode shape on common edge
order Natural frequency i3MCoupling node setN

u1
p
/ &&SINGLE POINT CONSTRAINT FORCE''

Plate 1 p
1 Hz(

u1
p

2n
(3000 Hz SPCFORCEPM fI 1i

p1
, fI 1i

p2
, fI 1i

p3
, fI 1i

p4
, fI 1i

p5
, fI 1i

p6
N

u2
q
/ &&DISPLACEMENT''

Plate 2 q
1 Hz(

u2
q

2n
(3000 Hz DISPLACEMENTPMu8 2i

q1
, u8 2i

q2
, u8 2i

q3
, u8 2i

q4
, u8 2i

q5
, u8 2i

q6
N
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plate 2 there are 100 nodes for the smallest edge in order to have coincidence meshing and
130 nodes for the other one. Appropriate boundary conditions and Lanczos method are
used to calculate the modes between 1 and 3000 Hz for each plate. The generalized masses
are normalized to one. The NASTRAN output data for each mode are the natural
frequency, the &&SINGLE POINT CONSTRAINT FORCE'' for plate 1, and the
&&DISPLACEMENT'' for plate 2. As the present approach requires only the mode shapes on
the coupling boundary, it is possible to select only the nodes on the coupling boundary as
an output set (coupling node set). That allows the size of the NASTRAN output "les to be
limited. For example, for plate 1, this output set is composed of the nodes, which are "xed,
and the shape output data are described by the &&SINGLE POINT CONSTRAINT
FORCE''. The output necessary for the CLF determination (see Table 2) are extracted from
the NASTRAN output "les and are analysed by a MATLAB program.

Equation (80) of Part I [1] is used to determine the interaction modal work from nodal
components of mode shapes. In the case of #exural plates coupling, only the 5th force
nodal component for plate 1 (y-component of bending moment) and the 5th displacement
nodal component for plate 2 (y-component of angular rotation) are not null for the nodes of
the coupling node set. Then, the interaction modal work between mode p of plate 1 and
mode q of plate 2 can be reduced to

=12
pq

" +

i|MCouplingnode set
N

fI 1i
p5

u8 2i
q5

, (19)

where fI 1i
p5

is the 5th nodal component force of node i representing the y-component bending
moment of the pth mode of plate 1, and u8 2i

q5
is the 5th nodal component displacement of

node i representing the y-component angular rotation of the qth mode of plate 2.

3.2. MODAL DENSITY COMPARISON

To check the validity of the FEM models in the frequency band of interest, it is possible to
count the natural frequencies (see Table 3), and then to determine the modal density for
each frequency band and "nally to compare it with the asymptotic value na given by

na"
J3AaBa

HaJEa/oa(1!la)
, a"1, 2 (modes/Hz). (20)



TABLE 3
Number of modes per band for each plate; xnite element results

315 Hz 400 Hz 500 Hz 630 Hz 800 Hz 1000 Hz 1250 Hz 1600 Hz 2000 Hz 2500 Hz

Plate 1 7 9 13 12 19 25 27 38 47 57
Plate 2 5 4 8 8 12 15 17 22 32 40

Figure 9. Modal densities ratio versus frequency, third-octave band calculation. **, FEM result; ] with
expression (20).
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This is presented in Figure 9 where the modal density ratio between the two subsystems is
plotted versus third octave band. It can be concluded that the FEM modelization represents
of the vibration behaviour of the plates well in the frequency range of interest. It is well
known that the eigenfrequencies and the mode shapes of the "nite element model may be
shifted to the real eigenfrequencies and mode shapes at &&high frequency'' even in the case of
a correct element model. However, as explained in reference [7], these numerical errors
seem to be reduced by averaging the data.

3.3. COUPLING LOSS FACTOR COMPARISON

From the expression of the interaction modal work for a discretized system (19) and with
the FEM data described in section 3.1, on the coupling loss factor (with (68) of part I) can be
evaluated, this result is called the CLF-DMF/FEM.

In the same manner as that in section 2, the present approach with FEM data is
compared to the results yielded by the SEA matrix-inversion technique with numerical
experiment. The &&exact'' results of the numerical experiment are obtained from the dual
modal formulation with an analytical modal description. A comparison with the general



Figure 10. Coupling loss factor versus frequency, third-octave band calculation. Three calculations: **,
CLF-DMF/FEM; s, SEA matrix-inversion; - - - -, travelling wave approach.

ESTIMATION OF SEA COUPLING LOSS FACTORS 943
dynamic sti!ness method allows the convergence of the model series to be checked. The
&&rain on the roof '' excitation on plate 2 is approximated by averaging plate energy over 15
points of excitation randomly distributed. Energies are spatial and frequency averaged.
CLF is "nally calculated by introducing plate energies into the SEA relation when
subsystem 1 is not excited,

gne
12

"

g
1
SE1

t
T

n
1
/n

2
SE2

t
T!SE1

t
T
, (21)

where SEa
t
T is the total energy of plate a obtained from numerical experiment, and na is the

modal density of plate a given by equation (20).
Figure 10 shows a comparison of three techniques of CLF calculation; the two techniques

previously described and the classical technique derived from the travelling wave approach
(see equations (20}23) in reference [8]).

There is a good agreement between the three results in high frequency. Below 800 Hz, the
travelling wave approach which considers semi-in"nite plates gives poor results for some
third-octave bands whereas the present approach takes the coupling between the two plates
into account correctly.

Figure 11 shows an SEA calculation using the CLF-DMF/FEM when plate 2 is excited.
This calculation is compared to an exact calculation (used previously in the SEA
matrix-inversion technique). Good agreement can be seen which clearly validates the
calculation of CLF with the present method.

The important variations of energy ratios for the frequency bands below 1000 Hz can be
explained by the fact that there are few resonant modes which participate to the coupling in
these bands. Indeed, Figure 12 shows the intermodal coupling factors for the third-octave
band centred on 800 Hz. Although plate 1 has 20 resonant modes in the frequency band and
plate 2 has 12 resonant modes, only two couples of modes contribute signi"cantly to the



Figure 11. Energy ratio E1/E2 versus frequency, third-octave band calculation, plate 2 excited. Two
calculations:**, SEA result with CLF obtained by DMF/FEM; s, exact result.

Figure 12. Intermodal coupling factors versus couples of resonant modes of the two plates, third-octave band
800 Hz; DMF/FEM results; modes classi"ed with increasing natural frequencies.
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coupling of the plates. Contrary to beam coupling, the spatial coincidence has an important
e!ect which leads some couples of modes to be uncoupled.

As for beams of equal section (see section 2.3.2), the coupling of plates of equal thickness is
a limit to the application of the present approach. Some slight errors will be made by this
approach because the resonant subsystem modes which are considered could not fully
represent the behaviour of the coupled plates. In this case of two edges-coupled rectangular
plates of equal thickness, the calculations proposed by Wester and Mace [9] can be more
appropriate because they do not require the numerous SEA assumptions.
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4. CONCLUSIONS

Beam examples have veri"ed the validity of the CLF determination with the dual modal
formulation and basic SEA relation for power #ow in oscillators having gyroscopic
coupling. It is shown that results are good when SEA assumptions are followed.

On the other hand, it has been seen that the present approach can be used in connection
with FEM. Application of the SEA-CLF/FEM technique gives good estimates of
vibrational energy ratios between two coupled plates for the third-octave band between 315
and 2500 Hz. Although eigenfrequency shifts occur in FEM calculations at high frequency,
good results are obtained for CLF. This is due to the averaging over several couples of
modes participating to the transfer. The simple plate example has been chosen to allow
comparison. The application to more complicated structures is straightforward because the
technique is based on any general "nite element model. It can be noticed that heterogeneous
substructures having three-dimensional vibration motions can be treated without di$culty
by the CLF-DMF/FEM technique.

When a subsystem has a low number of modes in the frequency band, SEA can give
a poor estimate of energy transfer, because some assumptions used in the method are not
realistic (in particular equipartition). The approach described in the two companion papers
is a starting point for an extension of SEA to non-modal energy equipartition in subsystems.
This SEA extension called statistical modal energy distribution analysis (SmEdA) is brie#y
presented in reference [4] and will be developed in another paper. The purpose of SmEdA is
to extend the validity of SEA to systems of low modal density.
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APPENDIX A: MODAL ANALYSIS OF UNCOUPLED-BLOCKED BEAM 1

Without applied forces and displacement, the free motion of the uncoupled-blocked
subsystem (beam 1) can be represented by the following equations:
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Two methods can be used to obtain the natural frequencies and the stress mode shapes:
First method, by analogy between the stress eigenvalue problem, and the equivalent

displacement eigenvalue problem.
To obtain the stress problem, the time second derivation of equation (A2) should be

combined with equation (A1):
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After a separation of time and space,
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the stress eigenvalue problem can be written
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This problem is analogous to classical displacement eigenvalue problem of a beam simply
supported in x"0 and free in x"¸

1
. Then, the solutions can be expressed by (u1
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As the Helmholtz mode for an acoustic cavity problem, the simply supported-clamped
beam has one stress mode of null natural frequency (see section 3.4.2 of Part I). Indeed by
analogy with displacement equation of motion, this mode corresponds to the rigid body
mode of the simply supported-free beam. It is expressed by

u1
0
"0, p8 1,0

x
(x)"x. (A11)

This method of calculation of stress mode shapes can be used only for simple structures
where the analogy with displacement equations is possible. This method does not permit the
generalized mass or the generalized sti!ness as de"ned in section 3 of Part I [1] (equations
(45)}(49)) to be obtained directly.

Second method, by the calculation of the displacement mode shapes of the displacement
eigenvalue problem and by using the constitutive law (see reference [10]).

The displacement eigenvalue problem is obtained directly by introducing equation (A1)
in equation (A2) and by taking into account boundary conditions.
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Using the constitutive law (A2), gives the stress shape associated to the pth mode is
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By this calculation the stress mode of null frequency cannot be determined. However, this
is not important for the CLF determination because this mode is always non-resonant and
thus it is not necessary to take it into account.

APPENDIX B: NOMENCLATURE
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1
, A

2
plate length of the common edge

b
1
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2
beam width

B
1
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2
plate length

E
1
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2
Young's modulus

SE1
t
T, SE2

t
T averaged total energy obtained from numerical experiment
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f 1t
k

, f 2t
k

force nodal variable
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